tcache¶
Warning
The current page still doesn't have a translation for this language.
You can read it through Google Translate.
Besides, you can also help to translate it: Contributing.
tcache 是 glibc 2.26 (ubuntu 17.10) 之后引入的一种技术(see commit),目的是提升堆管理的性能。但提升性能的同时舍弃了很多安全检查,也因此有了很多新的利用方式。
主要参考了 glibc 源码,angelboy 的 slide 以及 tukan.farm,链接都放在最后了。
相关结构体¶
tcache 引入了两个新的结构体,tcache_entry
和 tcache_perthread_struct
。
这其实和 fastbin 很像,但又不一样。
tcache_entry¶
/* We overlay this structure on the user-data portion of a chunk when
the chunk is stored in the per-thread cache. */
typedef struct tcache_entry
{
struct tcache_entry *next;
} tcache_entry;
tcache_entry
用于链接空闲的 chunk 结构体,其中的 next
指针指向下一个大小相同的 chunk。
需要注意的是这里的 next 指向 chunk 的 user data,而 fastbin 的 fd 指向 chunk 开头的地址。
而且,tcache_entry 会复用空闲 chunk 的 user data 部分。
tcache_perthread_struct¶
/* There is one of these for each thread, which contains the
per-thread cache (hence "tcache_perthread_struct"). Keeping
overall size low is mildly important. Note that COUNTS and ENTRIES
are redundant (we could have just counted the linked list each
time), this is for performance reasons. */
typedef struct tcache_perthread_struct
{
char counts[TCACHE_MAX_BINS];
tcache_entry *entries[TCACHE_MAX_BINS];
} tcache_perthread_struct;
# define TCACHE_MAX_BINS 64
static __thread tcache_perthread_struct *tcache = NULL;
每个 thread 都会维护一个 tcache_perthread_struct
,它是整个 tcache 的管理结构,一共有 TCACHE_MAX_BINS
个计数器和 TCACHE_MAX_BINS
项 tcache_entry,其中
tcache_entry
用单向链表的方式链接了相同大小的处于空闲状态(free 后)的 chunk,这一点上和 fastbin 很像。counts
记录了tcache_entry
链上空闲 chunk 的数目,每条链上最多可以有 7 个 chunk。
用图表示大概是:
基本工作方式¶
- 第一次 malloc 时,会先 malloc 一块内存用来存放
tcache_perthread_struct
。 - free 内存,且 size 小于 small bin size 时
- tcache 之前会放到 fastbin 或者 unsorted bin 中
- tcache 后:
- 先放到对应的 tcache 中,直到 tcache 被填满(默认是 7 个)
- tcache 被填满之后,再次 free 的内存和之前一样被放到 fastbin 或者 unsorted bin 中
- tcache 中的 chunk 不会合并(不取消 inuse bit)
- malloc 内存,且 size 在 tcache 范围内
- 先从 tcache 取 chunk,直到 tcache 为空
- tcache 为空后,从 bin 中找
- tcache 为空时,如果
fastbin/smallbin/unsorted bin
中有 size 符合的 chunk,会先把fastbin/smallbin/unsorted bin
中的 chunk 放到 tcache 中,直到填满。之后再从 tcache 中取;因此 chunk 在 bin 中和 tcache 中的顺序会反过来
源码分析¶
接下来从源码的角度分析一下 tcache。
__libc_malloc¶
第一次 malloc 时,会进入到 MAYBE_INIT_TCACHE ()
void *
__libc_malloc (size_t bytes)
{
......
......
#if USE_TCACHE
/* int_free also calls request2size, be careful to not pad twice. */
size_t tbytes;
// 根据 malloc 传入的参数计算 chunk 实际大小,并计算 tcache 对应的下标
checked_request2size (bytes, tbytes);
size_t tc_idx = csize2tidx (tbytes);
// 初始化 tcache
MAYBE_INIT_TCACHE ();
DIAG_PUSH_NEEDS_COMMENT;
if (tc_idx < mp_.tcache_bins // 根据 size 得到的 idx 在合法的范围内
/*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
&& tcache
&& tcache->entries[tc_idx] != NULL) // tcache->entries[tc_idx] 有 chunk
{
return tcache_get (tc_idx);
}
DIAG_POP_NEEDS_COMMENT;
#endif
......
......
}
__tcache_init()¶
其中 MAYBE_INIT_TCACHE ()
在 tcache 为空(即第一次 malloc)时调用了 tcache_init()
,直接查看 tcache_init()
tcache_init(void)
{
mstate ar_ptr;
void *victim = 0;
const size_t bytes = sizeof (tcache_perthread_struct);
if (tcache_shutting_down)
return;
arena_get (ar_ptr, bytes); // 找到可用的 arena
victim = _int_malloc (ar_ptr, bytes); // 申请一个 sizeof(tcache_perthread_struct) 大小的 chunk
if (!victim && ar_ptr != NULL)
{
ar_ptr = arena_get_retry (ar_ptr, bytes);
victim = _int_malloc (ar_ptr, bytes);
}
if (ar_ptr != NULL)
__libc_lock_unlock (ar_ptr->mutex);
/* In a low memory situation, we may not be able to allocate memory
- in which case, we just keep trying later. However, we
typically do this very early, so either there is sufficient
memory, or there isn't enough memory to do non-trivial
allocations anyway. */
if (victim) // 初始化 tcache
{
tcache = (tcache_perthread_struct *) victim;
memset (tcache, 0, sizeof (tcache_perthread_struct));
}
}
tcache_init()
成功返回后,tcache_perthread_struct
就被成功建立了。
申请内存¶
接下来将进入申请内存的步骤
// 从 tcache list 中获取内存
if (tc_idx < mp_.tcache_bins // 由 size 计算的 idx 在合法范围内
/*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */
&& tcache
&& tcache->entries[tc_idx] != NULL) // 该条 tcache 链不为空
{
return tcache_get (tc_idx);
}
DIAG_POP_NEEDS_COMMENT;
#endif
// 进入与无 tcache 时类似的流程
if (SINGLE_THREAD_P)
{
victim = _int_malloc (&main_arena, bytes);
assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
&main_arena == arena_for_chunk (mem2chunk (victim)));
return victim;
}
tcache->entries
不为空时,将进入 tcache_get()
的流程获取 chunk,否则与 tcache 机制前的流程类似,这里主要分析第一种 tcache_get()
。这里也可以看出 tcache 的优先级很高,比 fastbin 还要高( fastbin 的申请在没进入 tcache 的流程中)。 tcache_get()¶
看一下 tcache_get()
/* Caller must ensure that we know tc_idx is valid and there's
available chunks to remove. */
static __always_inline void *
tcache_get (size_t tc_idx)
{
tcache_entry *e = tcache->entries[tc_idx];
assert (tc_idx < TCACHE_MAX_BINS);
assert (tcache->entries[tc_idx] > 0);
tcache->entries[tc_idx] = e->next;
--(tcache->counts[tc_idx]); // 获得一个 chunk,counts 减一
return (void *) e;
}
tcache_get()
就是获得 chunk 的过程了。可以看出这个过程还是很简单的,从 tcache->entries[tc_idx]
中获得第一个 chunk,tcache->counts
减一,几乎没有任何保护。 __libc_free()¶
看完申请,再看看有 tcache 时的释放
void
__libc_free (void *mem)
{
......
......
MAYBE_INIT_TCACHE ();
ar_ptr = arena_for_chunk (p);
_int_free (ar_ptr, p, 0);
}
__libc_free()
没有太多变化,MAYBE_INIT_TCACHE ()
在 tcache 不为空失去了作用。 _int_free()¶
跟进 _int_free()
static void
_int_free (mstate av, mchunkptr p, int have_lock)
{
......
......
#if USE_TCACHE
{
size_t tc_idx = csize2tidx (size);
if (tcache
&& tc_idx < mp_.tcache_bins // 64
&& tcache->counts[tc_idx] < mp_.tcache_count) // 7
{
tcache_put (p, tc_idx);
return;
}
}
#endif
......
......
tc_idx
合法,tcache->counts[tc_idx]
在 7 个以内时,就进入 tcache_put()
,传递的两个参数是要释放的 chunk 和该 chunk 对应的 size 在 tcache 中的下标。 tcache_put()¶
/* Caller must ensure that we know tc_idx is valid and there's room
for more chunks. */
static __always_inline void
tcache_put (mchunkptr chunk, size_t tc_idx)
{
tcache_entry *e = (tcache_entry *) chunk2mem (chunk);
assert (tc_idx < TCACHE_MAX_BINS);
e->next = tcache->entries[tc_idx];
tcache->entries[tc_idx] = e;
++(tcache->counts[tc_idx]);
}
tcache_puts()
完成了把释放的 chunk 插入到 tcache->entries[tc_idx]
链表头部的操作,也几乎没有任何保护。并且 没有把 p 位置零。